PG COURSE OUTCOMES (MATHS WITH COMPUTER SCIENCE)

SEMESTER-I

COURSETITLE: ABSTRACT ALGEBRA
 PAPER-I

After completion of this course, students will be able

- Concept of group action.
- Class equation and its applications
- Sylow's Theorems and their applications.
- Ideal of a ring, Polynomial rings
- Euclidean Domains, Principle Ideal Domains, \& Unique Fraction Domains and relations among them.
- Ability to understand the various Principle Ideal Domains whose common example is the ring of integers \mathbb{Z}.

SEMESTER- I

COURSETITLE: MATHEMATICAL ANALYSIS
PAPER-II
After completion of this course, students will be able to

- Concept of extended real numbers,
- Lebesgue and Borel measures on real line.
- Measurability of real sets.
- Measurability of extended real valued functions.
- Foundation of extension to abstract spaces.
- Solving problems relating to determinations of measures of finite, infinite sets.
- Ability of constructing measurable, non-measurable sets and functions.

SEMESTER-I

COURSE TITLE: DISCRETEMATHEMATICS

PAPER-III

Upon successful completion of this course, the student will be able to:

- Understand the basic principles of sets and operations insets
- Apply counting principles to determine probabilities
- Demonstrate different traversal methods for trees and graphs
- Write model problems in computer science using trees and graphs
- Write an argument using logical notation and determine if the argument is or is not valid
- Determine when a function is one- one and onto.
- Prove basic set equalities.
- Demonstrate the ability to write and evaluate a proof.

SEMESTER- II

COURSE TITLE: LINEAR ALGEBRA

- Upon successful completion of this course, the student will be able to
- Construct, or give examples of, mathematical expressions that involve vectors, matrices, and linear systems of linear equations
- Finding eigen values and eigenvectors of a matrix or a linear transformation, and using them to diagonalize a matrix
- Demonstrate understanding of linear independence, span, and basis
- Apply principles of Matrix Algebra to linear transformations
- Characterize homogeneous linear systems using the concepts of free variables, span, pivots, linear combinations, and echelon forms
- Characterize linear transforms using the concepts of existence and uniqueness

SEMESTER- II

COURSETITLE: ORDINARY DIFFERENTIAL \& PARTIAL DIFFERENTIALEQUATIONS

After studying this course, you should be able to

- Solution methods for first and second order equations.
- Power series solutions.
- Properties of Bessel functions and Legendre polynomials.
- Existence and uniqueness of initial value problems.
- Picard's and Peano's theorems, Gronwall's inequality.
- Maximal interval of existence, continuous dependence
- Higher order linear equations and linear systems, fundamental solutions,
- Wronskian, matrix exponential equations. Boundary value problems for second order equations, Green functions,

SEMESTER- II

COURSETITLE: COMPLEX ANALYSIS

PAPER-III

Upon successful completion of this course, the student will be able to:

- Justify the need for a Complex Number System and explain how is relatedto other existing number systems
- Define a function of complex variable and carry out basic mathematical operations with complex numbers.
- know the condition(s) for a complex variable function to be analytic and/or harmonic
- State and prove the Cauchy Riemann Equation and use it to show that a function is analytic.
- define singularities of a function, know the different types of singularities, and be able to determine the points of singularities of a function
- Explain the concept of transformation in a complex space (linear and non-linear) and sketch associated diagrams.
- Understand the concept of sequences and series with respect to the complex numbers system and establish whether a given series/ sequences is convergent/ divergent at a specified point or interval.

SEMESTER- III

COURSE TITLE: ELEMENTARY NUMBER THEORY PAPER- I

Objective: Elementary Number Theory is the study of the basic structure and properties of integers. Learning Number Theory helps improving one's ability of mathematical thinking. Successful completion of this course will enable you to:

- Prove results involving divisibility and greatest common divisors.
- Solve systems of linear congruence's.
- Find integral solutions to specified linear Diophantine Equations.
- Apply Euler-Fermat's Theorem to prove relations involving prime numbers.
- Apply the Wilson's theorem.

SEMESTER- III

COURSE TITLE: OPERATION RESEARCH

PAPER-IV

Upon successful completion of this course, the student will be able to:

- Operation Research is used for defence capability acquisition decision making.
- It is used to find optimal or near optimal solutions to complex decision making problems.
- It is used in finding maximum (of profit or yield) in real-world objective.
- It is used in finding minimum (of loss or cost) in real-world objective.
- It is used in data envelopment.
- It has strong ties to computer science and analytics.

SEMESTER-IV

TITLE: INTEGRAL EQUATIONS AND CALCULUS OF VARIATION PAPER-I

Upon successful completion of this course, the student will be able to:

- Learn variation principles
- Develop the knowledge in the path of the rocket trajectory, optimal economic growth
- Gain the vast knowledge by using the applications of calculus of variations in biological and medical field.
Ex: Spread of a contagious disease, pest control cancer

Chemo therapyand immune system, etc.

- Learn easier \& systematic way to ordinary and differential equations and partial differential equations
- Develop the skills while doing/solving the various problems by using integral equations in all engineering sciences andetc.

SEMESTER- IV

COURSE TITLE: NUMERICAL ANALYSIS
PAPER-IV
Upon successful completion of this course, the student will be able to:

- Apply numerical methods to obtain approximate solutions to mathematical problems.
- To learn how to interpolate the given set of values
- Derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations, and the solution of differential equations.
- Work out numerical differentiation and integration whenever and wherever routine methods are not applicable.
- Work numerically on the ordinary differential equations using different methods through the theory of finite differences.
- Demonstrate understanding of common numerical methods and how they are used to obtain approximate solutions to otherwise intractable mathematical problems.

